

АО «СПИИРАН-НТБВТ»

Система интеллектуальной поддержки принятия решений по управлению городской средой

Д.т.н., профессор В. Попович

E-mail: popovich@oogis.ru
http://www.oogis.ru

Основные положения

Цель работы – локализация ПО на основе ИГИС (изделия А3), для обеспечения ППР в городе

СППР – средство интеллектуальной поддержки корпоративного управления городской средой

Основа СППР – интеллектуальная подсистема, ГИС, коммуникационный компонент, математические и имитационные модели

Область применения СППР — автоматизация деятельности должностных лиц всех уровней руководства и управления городом

Основные Задачи

Разработка руководящей идеи СИППРУГС

Теоретическое и технологическое обоснование СИППРУГС

Выбор базовых решений по созданию СИППРУГС

Разработка опытного образца ПО СИППРУГС

Направления основных работ

Анализ существующего состояния КИС

Определение путей и подходов по дальнейшей автоматизации системы руководства и управления городской средой

Разработка плана внедрения СИППРУГС

Реализация комплекса мероприятий по внедрению СИППРУГС

Ожидаемые результаты проекта

Автоматизированный цикл руководства и управления электронным правительством

Интеллектуальная ГИС

Электронный документооборот

Система онтологий, моделей, баз данных и знаний

Исследование объекта автоматизации

- Анализ современного состояния автоматизации Правительства
- 2 Разработка моделей бизнес процессов Правительства
- 3 Характеристика существующих элементов СИППРУГС
- Исследование унаследованных систем автоматизации
- Адаптация базовых технологий построения СИППРУГС
- 6 Доработка системы Онтологий
- Доработка архитектуры СИППРУГС
- Разработка ТЗ для проектов развития СИППРУГС

Современное состояние автоматизации

Состав АСУ

количество автоматизированных подсистем

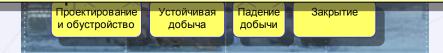
Продолжительность работ по созданию АСУ более ??? лет

Принципы построения АСУ

структурно-организационный ???

Организации принимавшие участвующие IBM, SAP, ???

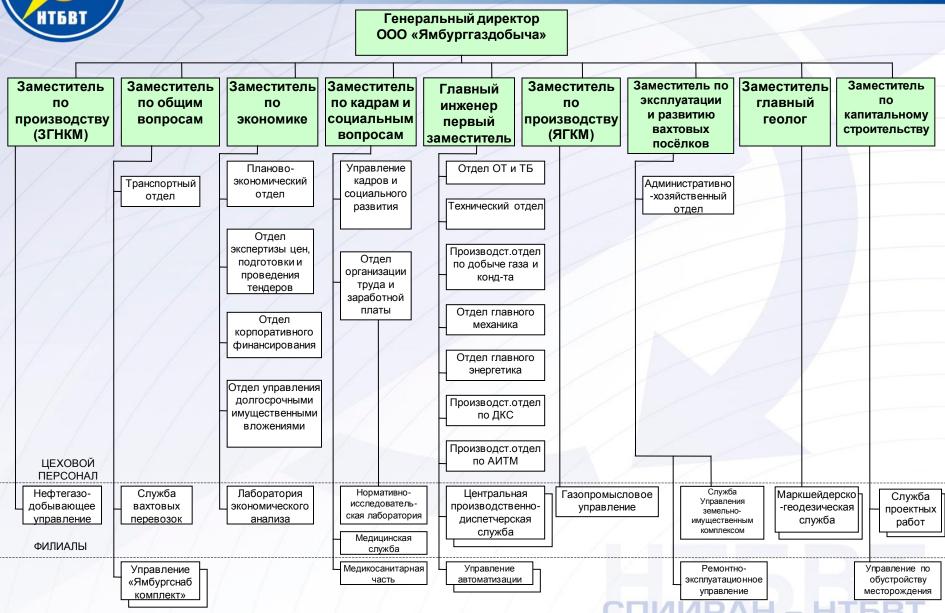
Общая характеристика Правительства


Цель стоящая перед Правительством

???

Приблаг Максимизация

Основополагающий принцип — оптимальное управление жизненным циклом Мегаполиса!



Жизненный цикла Мегаполиса – основной объект управления Правительства

в виде законченной последовательности взаимосвязанных основных и вспомогательных бизнес-процессов, начиная от ??? и до ???

Состав и подчиненность подразделений

Горизонтальные и вертикальные связи

Существующее состояние КИС во многом определяется тем, что автоматизация осуществляется по структурноорганизационной схеме.

В ходе эволюционного развития КИС автоматизация осуществлялась на различных технологических базисах, в результате чего информационное взаимодействие информационных систем затруднено.

Существующие принципы автоматизации Общества и построения КИС не в должной мере обеспечивают возможность увеличения степени интеграции информационных подсистем в составе КИС. Это обусловлено необходимостью геометрического наращивания ресурсов для интеграции подсистем.

СПИИРАН – НТБВТ

Требования к описанию бизнес-процессов

Анализ цикла управления городской средой(???)

- Анализ уровней управления городской средой(стратегический, оперативный, тактический)
- Анализ фаз управления (обработка входной информации, выработки замысла, принятия решения, планирования исполнения, контроля и анализа деятельности)
- Перечень автоматизированных задач управления

Классификация бизнес-процессов

Уровни бизнес-процессов

Стратегический

формирующий деятельность Общества на длительную перспективу и отражающий глобальные тенденции в бизнесе Общества.

Оперативный

отражающий решение задач на среднесрочную перспективу по времени (бизнеспроцесс уровня месторождения)

Тактический

бизнес-процесс, отражающий решение задач на краткосрочную перспективу по времени от реального времени до года (бизнес-процесс уровня скважины, отдела или цеха).

Группы бизнес-процессов

Основной

непосредственно определяет основной результат функционирования Общества

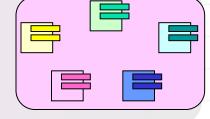
Вспомогательный

обеспечивающий основные бизнес-процессы (поддерживает инфраструктуру Общества)

Обеспечивающий

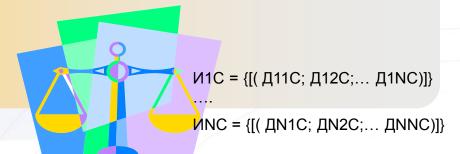
общекорпоративные процессы, предназначенные для поддержки выполнения всех основных и вспомогательных процессов

Анализ бизнес-процессов

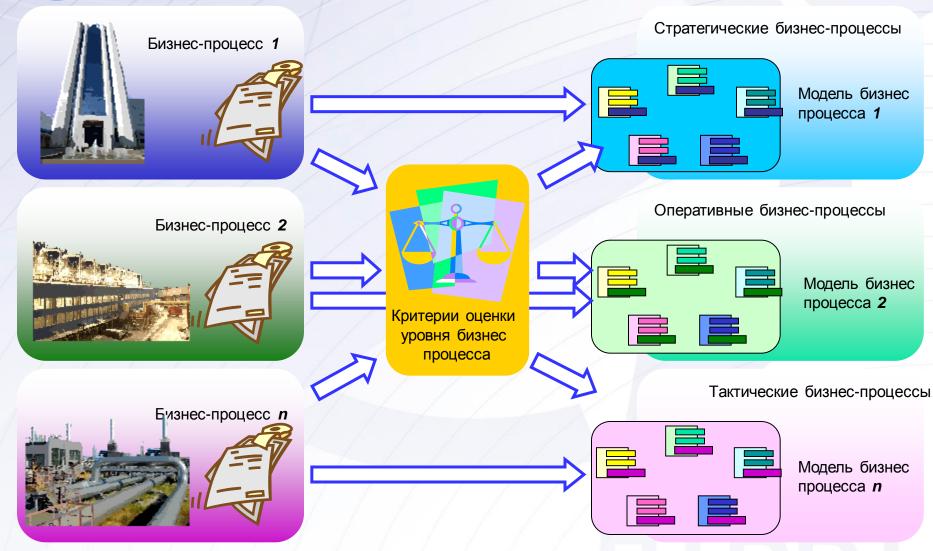

Создание универсальной модели бизнес-процесса

Создание модели бизнес-процесса заданного уровня Модель стратегического

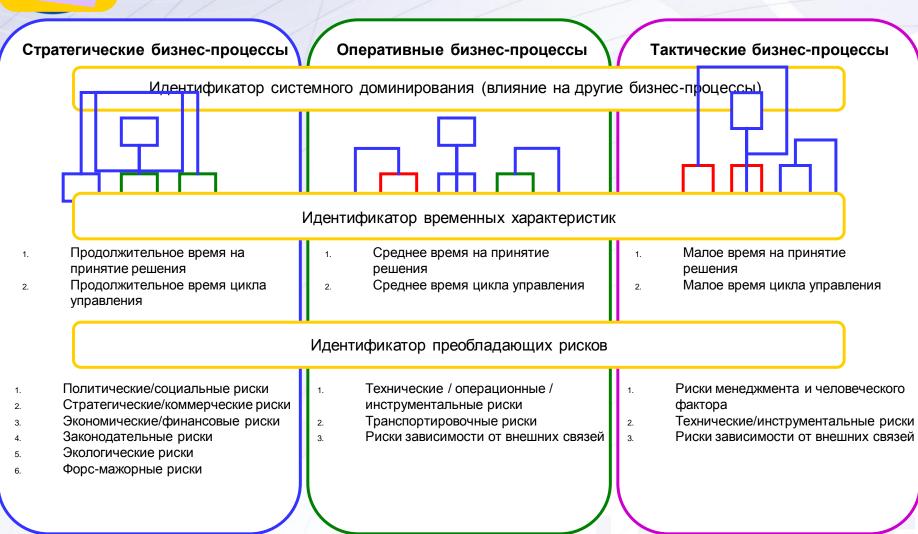
бизнес-процесса


Модель оперативного бизнес-процесса

Универсальная модель бизнес-процесса


Модель тактического бизнес-процесса

Формирование критериев идентификации уровня бизнес-процесса



Анализ бизнес-процессов

Критерии оценки уровня бизнес-процесса

Результаты анализа бизнес-процессов

Формирование перечня автоматизируемых задач управления в Правительстве

Методический аппарат, обеспечивающий идентификацию бизнес-процессов

Модели принятия управленческих решений субъектами управления для бизнеспроцессов каждого из уровней

Описание вертикальных и горизонтальных связей бизнес-процессов

Модели поведения объектов управления с указанием перечня состояний и порядком перехода в эти состояния

UML-модели системы управления бизнес-процессами

Формальное описание бизнес-процессов

- Функция управления
- Субъект и объект управления
- Задействованные ресурсы
- Модель принятия управленческого решения
- Точки взаимодействия с другими бизнес-процессами

Характеристика существующих элементов КИС

Должна включать в себя:

 Классификацию существующих информационных систем и подсистем

- Обследование существующих программноинформационных систем общества, на предмет интеграции в состав КИС
- Оценку необходимых направлений наращивания комплекса средств автоматизации

Требования к разработке теоретических основ КИС

- ↓ Теоретические основы КИС система научнообоснованных взаимосвязанных моделей, алгоритмов, методов, имеющих целью обосновать предлагаемые в Концепции технические решения
- ↓ Главная задача теоретических основ КИС формирование научных взглядов для организации совместной обработки массивов разнородной информации подсистем КИС Общества

Базовый теоретический подход

Гармонизация данных – приведение данных получаемых от различных источников к общему формату

Интеграция информации – объединение информации об объекте полученной от различных источников

Слияние данных – процесс направленный на получение нового знания об объекте за счет интеллектуальной обработки имеемой информации

Information Fusion

Требования к разработке базовых технологий построения КИС

- → Интеллектуальная ГИС
- → Система онтологий
- → Экспертная система
- Система преобразования документов
- → Комплексы расчетных моделей
- Система имитации и моделирования

Разработка системы онтологий СИППРУГС

Онтология представляет собой совокупность понятий предметной области и связей между ними

КИС должна обеспечивать единую модель представления информации для всех участников бизнес-процессов общества – пользователей КИС и компонентов КИС. Формой существования единой модели представления информации является система онтологий

Онтологии характеризуются единством, полнотой и непротиворечивостью используемых понятий. Создание онтологии, помимо единообразия представления разнородной информации, позволит сформировать целостный взгляд на предметную область, выявить недостающие компоненты знания и повысить эффективность его повторного использования.

Задачи системы Онтологий

- Устранить избыточность данных.
- Выявить и формализовать недостающие для оптимальной реализации бизнес-процессов данные.
- Учесть особенности бизнес процессов и возможность изменения в дальнейшем его структуры и/или выполняемых им функций.
- Повысить эффективность повторного использования данных.
- Учитывать процессы, происходящие на протяжении всего жизненного цикла КИС.
- Поддерживать процессы по гармонизации, интеграции и слиянию информации в пределах системы.

Концептуальные требования

Структурные требования

Концептуальные требования

- 1. Для повышения эффективности управления данными и экономии ресурсов Общества требуется устранить избыточность данных.
- 2. Для повышения эффективности адаптации Общества к изменению требований, в процессе разработки системы онтологий требуется выявить и формализовать недостающие для оптимальной реализации бизнес-процессов данные.
- 3. В системе онтологий должны быть учтены особенности бизнес процессов Общества и возможность изменения в дальнейшем его структуры и/или выполняемых им функций.
- 4. С целью эффективного использования ресурсов и увеличения скорости реакции Общества на изменения требований бизнес функций Общества, система онтологий должна повысить эффективность повторного использования данных.
- 5. Система онтологий, как основа информационного обеспечения, должна учитывать процессы, происходящие на протяжении всего жизненного цикла КИС.
- Для обеспечения объединения данных от различных источников для решения задач система онтологий должна поддерживать процессы по гармонизации, интеграции и слиянию информации в пределах системы.

Структурные требования

Концептуальные требования

Структурные требования

- 1. Система онтологий должна включать метод преобразования имеющихся или поступающих в систему данных к единой модели представления данных.
- 1. Для поддержки процессов гармонизации, интеграции и слияния данных, система онтологий должна предоставлять универсальное описание предметной области и универсальный механизм отношений.
- 1. Система онтологий должна поддерживать адаптацию к изменяющимся потребностям Общества, для чего требуется разделить систему на несколько взаимосвязанных модулей, т.е. система должна состоять не из одной онтологии, но из системы взаимосвязанных онтологий.

Концептуальные требования

Структурные требования

- 1. Требуется реализовать механизм множественного наследования, в рамках которого один объект наследует множество свойств из различных онтологий системы.
- 1. Требуется реализовать механизм контроля (аудита) состояния системы в определенный момент времени, восстановления ее и сохранение истории состояний объектов.
- 1. Язык описания онтологий должен поддерживать процессы гармонизации данных, допускать переносимость онтологий между различными программными платформами, и учитывать необходимость обработки информации.
- 1. Информационная модель должна позволять создание различных вариантов обстановки, для чего необходимо реализовать разделение постоянной и переменной информации об объекте.
- 1. Для ограничения доступа к множеству объектов и их свойств необходимо реализовать механизм фильтрации информации для различных групп пользователей.

Состав общей архитектуры СИППРУГС

- методическое обеспечение;
- математическое обеспечение;
- информационное обеспечение;
- программное обеспечение;
- техническое обеспечение;
- система безопасности и защиты информации;
- система внешних связей;
- структура жизненного цикла.

Методическое обеспечение

Методическое обеспечение представляет собой совокупность документов, описывающих технологию построения СИППРУГС, методы выбора и применения пользователями технологических приемов для получения конкретных результатов

Главная цель методического обеспечения — организация эффективного создания компонентов СИППРУГС. Внедрение правильной методологии организации работы над проектом позволяет получить гарантированный положительный результат, для чего требуется четко и грамотно организовать весь процесс разработки проекта.

Требования к методическому обеспечение

Методическое обеспечение должно регламентировать следующие аспекты

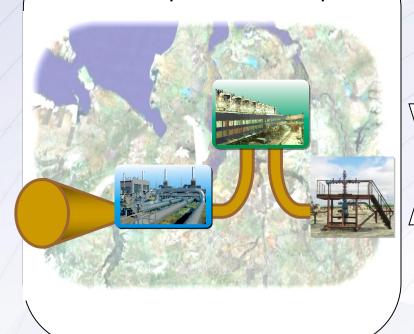
- Регламент описания каждого бизнес-процесса
- Описание ролей разработчиков, принимающих участие в выполнении производственной и управленческой деятельности бизнес-процесса
- → Инструкции по работе с компонентами СИППРУГС, которые должны содержать сведения о том, в каких процессах, кем (каким деловым работником) и для каких целей используется компонент и подробные руководства по использованию

Математическое обеспечение

- Основной функцией математического обеспечения СИППРУГС является количественная поддержка принятия обоснованного решения должностными лицами Общества на всех уровнях управления. Кроме того, математическое обеспечение должно решать задачи, связанные с обработкой и отображением входной, выходной информации СИППРУГС
- Математическое обеспечение должно включать в свой состав перечень математических моделей, алгоритмов и методов которые должны быть реализованы в информационно-аналитических, информационно-расчетных и расчетных составляющих специального программного обеспечения (СПО) СИППРУГС, а также характеристику этих моделей алгоритмов и методов.

Требования к математическому обеспечению

- Должна обеспечиваться:
 - 1. Математическая поддержка принятия обоснованного решения должностными лицами Правительства на всех уровнях управления.
 - 2. Математические модели, алгоритмы и методы, реализованные в информационно-аналитических, информационно-расчетных и расчетных составляющих специального программного обеспечения КИС.
 - 3. Полнота и адекватность математического описания процессов управления, реализуемых в Правительстве.
 - 4. Требования, предъявляемые системой управления Правительства.
- Математические модели, алгоритмы и методы, реализованные в СИППРУГС, должны иметь структуру, обеспечивающую удобство их интеграции в специальное программное обеспечение СИППРУГС.
- Перечень математических методов, моделей и алгоритмов должен быть структурирован исходя из уровней и этапов управления.



- Информационное обеспечение должно позволить строить динамические информационные модели систем управления жизненным циклом Месторождений, которые в каждый момент времени содержат данные, соответствующие фактическим параметрам объекта и среды, в которой они функционирует. Компонентами этих моделей должны стать динамические информационные модели подчиненных управляемых объектов.
- ↓ Динамическая информационная модель каждого компонента должна представлять собой организованное в соответствии с определенной системой правил отображение состояний информационных объектов и их взаимодействие друг с другом.

Информационное обеспечение

Объекты реального мира

Динамическая информационная модель

Динамическая информационная модель (ДИМ) — организованное в соответствии с определенной системой правил отображение состояний объектов реального мира и их взаимодействий друг с другом.

Информационное обеспечение

Свойства динамической информационной модели

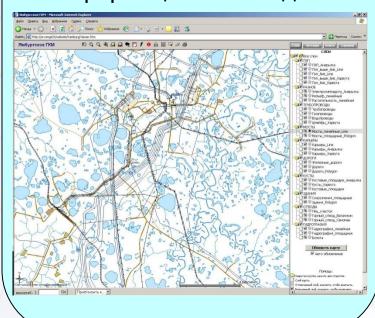
Универсальность

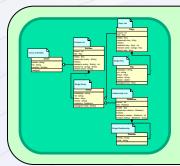
Позволяет строить динамическую информационную модель любой системы управления, которая в каждый момент времени содержит данные, соответствующие фактическим параметрам объекта и среды, в которой она функционирует.

Полнота

Удовлетворение потребности во всех информационных ресурсах для принятия обоснованных управленческих решений на всех уровнях управления, на всех фазах управления и на протяжении всего жизненного цикла объекта управления

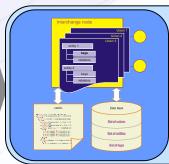
Модифицируемость


Приспособленность к изменению условий протекания бизнес процесса, порядка взаимодействия его компонентов на протяжении всего жизненного цикла объекта управления



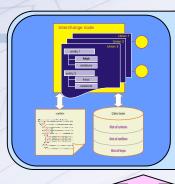
Информационное обеспечение

Система правил динамической информационной модели


Динамическая информационная модель

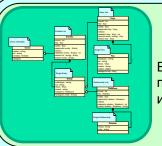
Единая модель представления информации (ЕМПИ) — универсальная информационно-логическая метамодель, предоставляющая программным компонентам структуру сущностей описывающих предметную область. ЕМПИ задает систему правил для ДИМ

Единая модель информационного взаимодействия (ЕМИВ) — универсальная метамодель, предоставляющая программным компонентам структуру сущностей содержащихся в сообщении. ЕМВИ обеспечивает информационное взаимодействие между программными компонентами, построенными на основе ЕМПИ


Decomposition	
Structuring	
Formalization	
Entities separation	
Relations coding	
Space building	

Общий метод приведения информации (ОМПИ) к единой модели представления информации — метод, предлагающий общую последовательность действий по преобразованию информации из метамодели любого компонента к ЕМПИ

Организация компонентов системы



ЕМИВ

Единая модель информационного взаимодействия

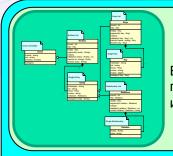
ЕМПИ

Единая модель представления информации

Гармонизация

ЕМПИ

Единая модель представления информации



ОМПИ

Общий метод приведения информации

Модель представления информации компонента

Заимствованный компонент системы

ЕМПИ

Единая модель представления информации

Компонент системы 2

Компонент системы 1

СПИИРАН – НТБВТ

Информационное обеспечение

Требования к единой модели представления информации

Способность позволяющая моделировать любой бизнес процесс Общества, независимо от его природы и места в общей структуре на всех уровнях (стратегическом, оперативном, тактическом) управления, на всех фазах управления и на протяжении всего жизненного цикла объекта управления

Модель должна позволять строить динамическую информационную модель любого компонента системы.

Описания классов информационных объектов с перечнем характерных для них свойств должны формироваться динамически в процессе функционирования программных компонентов без изменения физической структуры модели.

Информационное обеспечение

Требования к единой модели информационного взаимодействия

Объекты модели должны позволять реализовывать любое информационное взаимодействие компонентов системы необходимое для выполнения автоматизированных бизнес функций

Для снижения требований к программному и аппаратному обеспечению модель должна быть достаточно простой, то есть содержать малое количество типов элементов

Должен быть реализован механизм прямого и обратного преобразования данных из единой модели представления информации в единую модель обмена информацией

Информационное обеспечение

Требования к общему методу приведения информации

Метод должен предлагать общую конкретную последовательность преобразования информации для всех заимствованных систем, входящих в состав КИС

Метод должен реализовывать механизмы, предусмотренные методологией гармонизации, интеграции и слияния данных

Для снижения требований к программному обеспечению метод преобразования должен быть достаточно простой

Программное обеспечение

Концепция развития СИППРУГС не подразумевает создание конечных программных продуктов, но вместе с тем все решения, предлагаемые ею, должны быть реализованы через систему Проектов в виде программных систем. Исходя из этого, в ходе работы над Концепцией необходимо четко обозначить облик предполагаемого программного обеспечения.

Функциональные требования

Нефункциональные требования

Требования предметной области

Функциональные требования

- 1. Выработать перечень сервисов, которые должна выполнять каждая функциональная система СИППРУГС
- 2. Описывать характеристики системы и её окружения. Указать перечень ограничений, накладываемых на действия и функции, выполняемые системой, которые включают временные ограничения, ограничения на процесс разработки системы, стандарты.
- з. Учесть параметры характеризуют предметную область, где будет эксплуатироваться система.

Нефункциональные требования

Требования предметной области

Функциональные требования

Нефункциональные требования

- 1. Требования к ПО, где необходимо описать эксплуатационные свойства программного продукта (производительность системы, объём необходимой памяти, надёжность, переносимость системы).
- 2. Организационные требования, которые отображают политику и организационные процедуры Правительства и разработчиков ПО (стандарты разработки, языки программирования и методы проектирования, сопутствующая документация).
- 3. Внешние требования, которые учитывают факторы, внешние по отношению к разрабатываемой системе и процессу её разработки (взаимодействие данной системы с другим ПО, юридические требования,)

Требования предметной области

Функциональные требования

Нефункциональные требования

Требования предметной области

- 1. Пользовательские требования, которые должны описывать функциональные и нефункциональные системные требования исходя из позиции пользователя. Эти требования должны определять внешнее поведение системы, избегая определения структурных характеристик системы.
- 2. Системные требования, в которых должно быть детализированное описание пользовательских требований. Они должны представлять максимально полную спецификацию системы в целом. Спецификация требований может строиться на основе различных системных моделей, таких, как объектная модель, модель потоков данных.

СПИИРАН – НТБВТ

Требования к техническому обеспечению

Концепции должны быть сформулированы требования к надежности компонентов СИППРУГС, включающие:

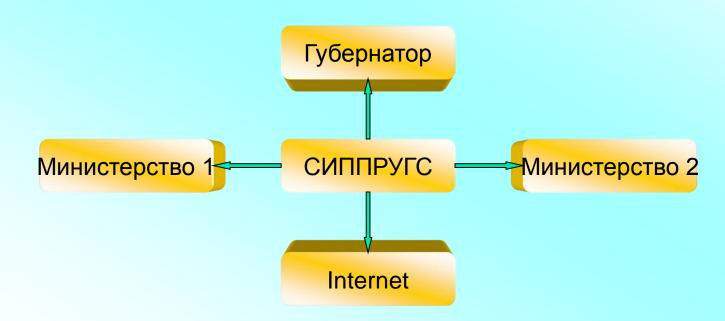
- Типовую модель эксплуатации, применительно к которой задают количественные требования надежности.
- Критерии отказов в режимах применения по назначению, применительно к которым задают требования безотказности.
- Значение требуемого времени непрерывной безотказной работы.
- Критерии предельных состояний, применительно к которым задают требования долговечности.
- Критерии защитных свойств компонентов СИППРУГС, применительно к которым задаются требования сохраняемости.

Требования к техническому обеспечению

Необходимо сформировать требования к эксплуатации, хранения, обслуживания и ремонта, включающие:

- Требования к рабочим и предельным условиям эксплуатации, в пределах которых элементы СИППРУГС сохраняет свои параметры в пределах установленных норм.
- Требования к эксплуатационным режимам.
- Требования к продолжительности непрерывной работы.
- Требования к эксплуатации в аварийных ситуациях.
- Требования в целях исключения несанкционированного применения.
- Требования к системе средств эксплуатационного контроля.
- Требования к численности, составу и квалификации обслуживающего персонала.
- Требования к информационно-справочной системе по эксплуатации, техническому обслуживанию и ремонту.
- Требования к видам, периодичности и объему технического обслуживания, контролю технического состояния и ремонта.
- Требования к времени приведения в готовность использования.
- Требования к удобству сборки и разборки при техническом обслуживании и ремонте.
- Требования к возможности исключения неправильной сборки и других ошибок обслуживающего персонала во время эксплуатации, технического обслуживания и ремонта.
- Требования к составу инструментов и средств измерений для проведения технического обслуживания и ремонта.
- Требования к видам и составу комплектов ЗИП.
- Требования к условиям хранения, консервации технических средств.
- Требования к потребным затратам материалов, средств труда, трудоемкости и времени на проведение технического обслуживания, ремонта и хранения технических средств.

Система безопасности и защиты информации


В силу специфики функционирования СИППРУГС, вызванной работой с информацией, составляющей государственную и коммерческую тайну, система безопасности и защиты информации является неотъемлемой частью системы и должна развиваться вместе с развитием системы. На этапе работ над Концепцией необходимо оценить уровни защищённости в системе конфиденциальной информации и сведений, составляющих Государственную тайну.

- Необходимо разработать требования к безопасности информации компонентов СИППРУГС, включающие:
 - → Выявление внешних факторов, воздействующих на безопасность информации;
 - Формирование требований безопасности с учётом действующей Системы стандартов.
- Необходимо разработать требования к системе защиты информации в СИППРУГС, включающие :
 - → Выполнение комплексного обследования объектов Правительства
 - → Классификацию СИППРУГС в соответствии с РД ГТК «Автоматизированные системы. Защита от несанкционированного доступа к информации. Классификация автоматизированных систем и требования по защите информации»
 - На основании акта классификации СИППРУГС разработку требований к системе защиты информации Правительства

Система внешних связей

Корпоративная информационная система Правительстване является замкнутой и в процессе своего функционирования предполагает взаимодействие с другими информационными системами, поэтому в рамках Концепции необходимо учесть требования по взаимодействию с такими информационными системами.

Стадии жизненного цикла компонентов СИППРУГС

/	№ п/п	Стадия	Описание
/	1	Формирование задания	Анализ потребностей, выбор концепции и проектных решений
	2	Разработка	Проектирование системы
/	3	Реализация	Изготовление системы
	4	Эксплуатация	Ввод в эксплуатацию и использование системы
1	5	Поддержка	Обеспечение функционирования системы
1	6	Снятие с эксплуатации	Прекращение использования, демонтаж, архивирование системы

Проекты (НИОКР) по развитию СИППРУГС

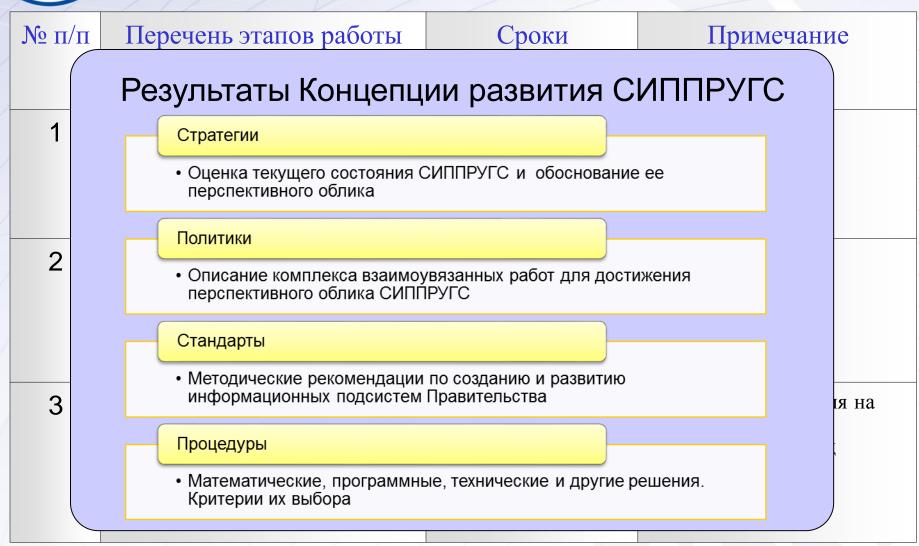
Система НИОКР представляет собой совокупность научноисследовательских и опытно-конструкторских работ, осуществляемых с целью получения единой сложной технической системы – СИППРУГС Правительства

- Система НИОКР должна реализовать все предлагаемые решения.
- Система НИОКР определяет:
 - Количественный состав и тематику научно-исследовательских и опытно-конструкторских работ, направленных на развитие СИППРУГС;
 - Сроки проведения указанных работ;
 - Объемы и предполагаемые источники их финансирования.
 - Предполагаемый состав исполнителей системы НИОКР.
- Система НИОКР должна обосновать последовательность выполнения и взаимосвязь НИР и ОКР, а также содержать прогноз вклада каждой научно-исследовательской и опытноконструкторской работы в итоговый вариант СИППРУГС.

Ожидаемый эффект

Система показателей эффективности СИППРУГС

Предполагается оценить эффективность СИППРУГС на основе следующих показателей


Совокупная стоимость владения TCO (Total Cost Ownership)

Возврат инвестиций – ROI (Return On Investment)

Анализ выгодности затрат – CBA (Cost Benefits Analysis)

Организация работ над СИППРУГС

Архитектура СИППРУГС

Подсистема руководства

Модуль коммуникаций

Модуль онтологий

> Модуль документооборота

Подсистема управления

Модуль настройки системы

Модуль информационно-расчетный

Модуль прикладных программ

Геоинформационный интерфейс

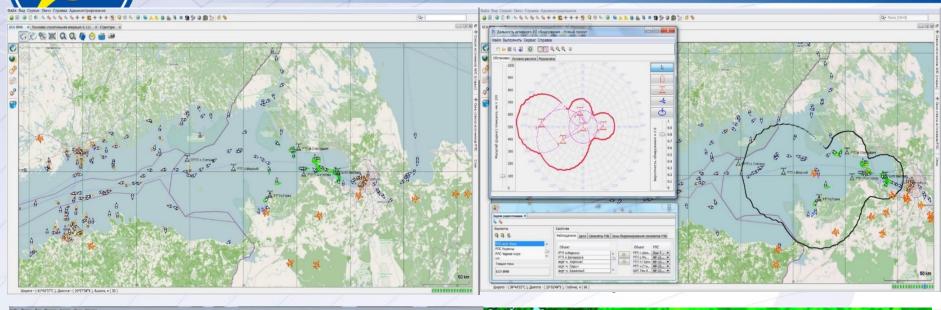
Сервер картографических данных Сервер документооборота Модуль XMLпреобразований документов

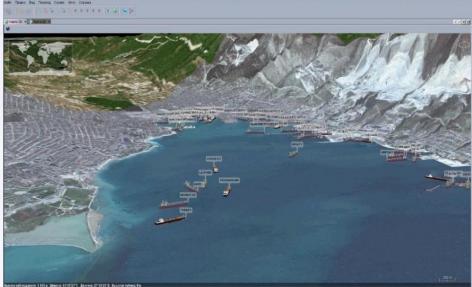
Модуль информационносправочный

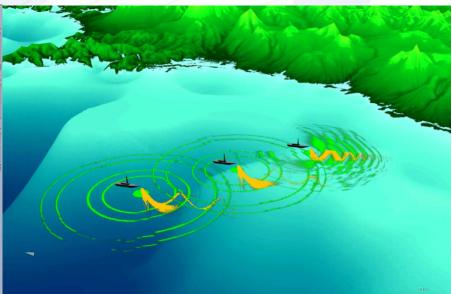
Модуль реального времени

Информационносправочная подсистема

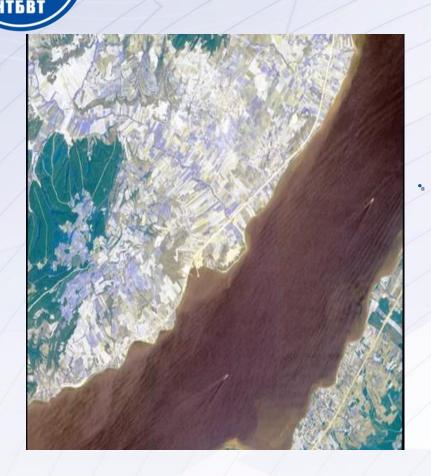
База данных сценариев Моделирующая подсистема

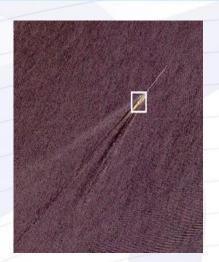


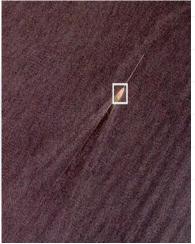

раны коллективного пользования СИППРУГС



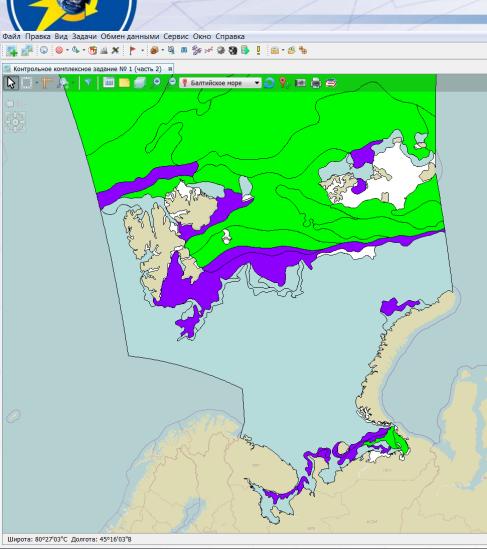
Представление обстановки в порту



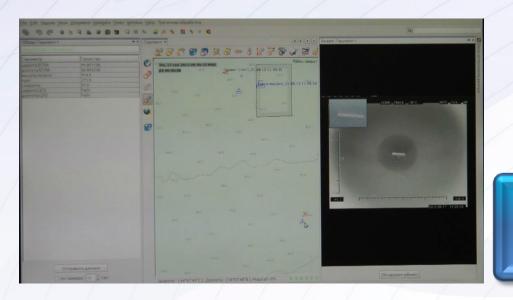


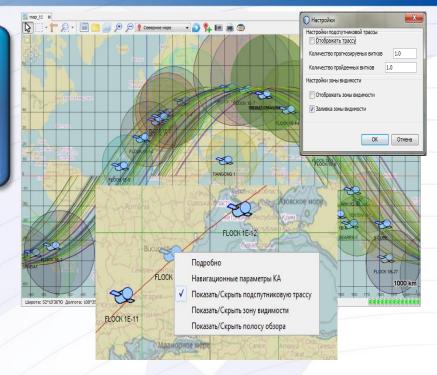


СПИИРАН – НТБВТ


Распознавание снимков ДЗЗ

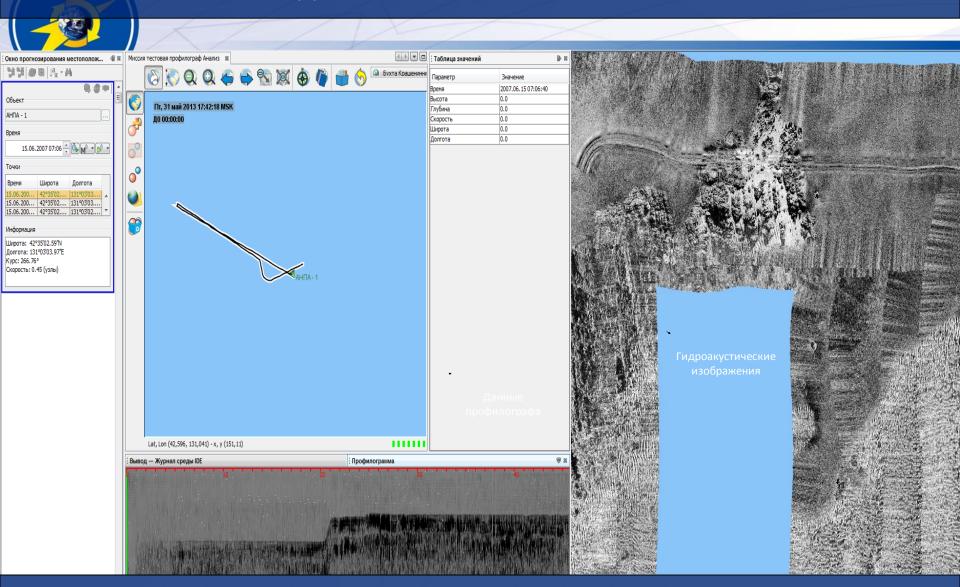
Ледовая обстановка





Дополнительные задачи СИППРУГС

Отображение космической обстановки (в интересах ДЗЗ) с трассами КА, зонами радиовидимости, параметрами орбиты КА. Решение типовых задач баллистического обеспечения группировки КА ДЗЗ



Получение информации от БПЛА (видеоинформация в различных режимах работы, параметры движения БПЛА)

Донная обстановка от АНПА

Выводы

Целью создания СИППРУГС является обеспечение оптимального жизненного цикла Мегаполиса

Проект должен наметить пути дальнейшей модернизации СИППРУГС, произвести ревизию существующего состояния и указать проблемные места автоматизации Правительства.

Основным направлением дальнейшего развития СИППРУГС должен стать процесс интеграции отдельных в том числе и существующих подсистем с целью решения сложных, комплексных задач процесса руководства и управления

Решения, предложенные Проектом, должны дать возможность снизить издержки на разработку, развитие и внедрение отдельных подсистем СИППРУГС, позволить с меньшими затратами модифицировать их с учетом изменяющихся требований.

Спасибо за внимание!

Контактная информация:

Василий Васильевич ПОПОВИЧ

199178, Россия, Санкт-Петербург, 14линия В.О., д. 39

E-mail:

popovich@mail.iias.spb.su popovich@oogis.ru

Телефон: +7 812 355 96 91

Факс:

+7 812 355 95 74